Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.759
Filtrar
1.
Sci Rep ; 14(1): 5474, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443456

RESUMO

Two new series of oxadiazole and pyrazoline derivatives were designed and synthesized as promising EGFR-TK inhibitors. The in vitro antiproliferative activity was studied against three human cancer cell lines; HCT116, HepG-2 and MCF7 using MTT assay. Compound 10c showed the most potent anticancer activity against all cancer cell lines, with IC50 range of 1.82 to 5.55 µM, while proving safe towards normal cells WI-38 (IC50 = 41.17 µM) compared to the reference drug doxorubicin (IC50 = 6.72 µM). The most active candidates 5a, 9b, 10a, 10b and 10c were further assessed for their EGFR-TK inhibition. The best of which, compounds 5a and 10b showed IC50 of 0.09 and 0.16 µM respectively compared to gefitinib (IC50 = 0.04 µM). Further investigation against other EGFR family members, showed that 5a displayed good activities against HER3 and HER4 with IC50 values 0.18 and 0.37 µM, respectively compared to gefitinib (IC50 = 0.35 and 0.58 µM, respectively). Furthermore, 5a was evaluated for cell cycle distribution and apoptotic induction on HepG-2 cells. It induced mitochondrial apoptotic pathway and increased accumulation of ROS. Molecular docking study came in agreement with the biological results. Compounds 5a and 10b showed promising drug-likeness with good physicochemical properties.


Assuntos
Receptores ErbB , Oxidiazóis , Humanos , Gefitinibe , Simulação de Acoplamento Molecular , Ciclo Celular , Oxidiazóis/farmacologia
2.
Eur J Med Chem ; 269: 116305, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518525

RESUMO

Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 µM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 µM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 µM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 µM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Neuraminidase , Oseltamivir/análogos & derivados , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Oseltamivir/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Oxidiazóis/farmacologia , Farmacorresistência Viral
3.
ACS Chem Neurosci ; 15(7): 1501-1514, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511291

RESUMO

NS9283, 3-(3-pyridyl)-5-(3-cyanophenyl)-1,2,4-oxadiazole, is a selective positive allosteric modulator of (α4)3(ß2)2 nicotinic acetylcholine receptors (nAChRs). It has good subtype selective therapeutic potential afforded by its specific binding to the unique α4-α4 subunit interface present in the (α4)3(ß2)2 nAChR. However, there is currently a lack of structure activity relationship (SAR) studies aimed at developing a class of congeners endowed with the same profile of activity that can help consolidate the druggability of the α4-α4 subunit interface. In this study, new NS9283 analogues were designed, synthesized, and characterized for their ability to selectively potentiate the ACh activity at heterologous (α4)3(ß2)2 nAChRs vs nAChR subtypes (α4)2(ß2)3, α5α4ß2, and α7. With few exceptions, all the NS9283 analogues exerted positive modulation of the (α4)3(ß2)2 nAChR ACh-evoked responses. Above all, those modified at the 3-cyanophenyl moiety by replacement with 3-nitrophenyl (4), 4-cyanophenyl (10), and N-formyl-4-piperidinyl (20) showed the same efficacy as NS9283, although with lower potency. Molecular dynamics simulations of NS9283 and some selected analogues highlighted consistency between potentiation activity and pose of the ligand inside the α4-α4 site with the main interaction being with the complementary (-) side and induction of a significant conformational change of the Trp156 residue in the principal (+) side.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Piridinas/farmacologia , Piridinas/química , Membrana Celular/metabolismo , Oxidiazóis/farmacologia
4.
Chem Commun (Camb) ; 60(25): 3397-3400, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38404238

RESUMO

Biothiol-activatable prodrug RK-296 was designed for the delivery of potent anti-cancer agent NBDHEX with concomitant turn-on near infrared (NIR) fluorescence. NBDHEX exhibits anti-cancer activity by selectively inhibiting glutathione-S-transferase pi (GSTP1), which is overexpressed in cancer cells and responsible for the inactivation of chemotherapeutic drugs. The sustained release of NBDHEX from the prodrug would be useful for ameliorating the off-target side-effects of NBDHEX.


Assuntos
Biotina , Pró-Fármacos , Fluorescência , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Oxidiazóis/farmacologia
5.
Bioorg Chem ; 145: 107208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354501

RESUMO

Hepatocellular carcinoma (HCC) is a major challenge for human healthy. Daphnane-type diterpenes have attracted increasingly attention due to remarkable pharmaceutical potential including anti-HCC activity. To further develop this class of compounds as inhibitors of HCC, the daphnane diterpenoids 12-O-debenzoyl-Yuanhuacine (YHC) and 12-hydroxydaphnetoxin (YHE) were prepared by a standard chemical transformation from dried flower buds of the Daphne genkwa plant. Subsequently, 22 daphnane diterpenoidal 1,3,4-oxdiazole derivatives were rationally designed and synthesized based on YHC and YHE. The assessment of the target compound's anti-hepatocellular carcinoma activity revealed that YHC1 exhibited comparable activity to sorafenib in the Hep3B cell line, while demonstrating higher selectivity. The mechanistic investigation demonstrates that compound YHC1 induces cell cycle arrest at the G0/G1 phase, cellular senescence, apoptosis, and elevates cellular reactive oxygen species levels. Moreover, molecular docking and CETSA results confirm the interaction between YHC1 and YAP1 as well as TEAD1. Co-IP experiments further validated that YHC1 can effectively inhibit the binding of YAP1 and TEAD1. In conclusion, YHC1 selectively targets YAP1 and TEAD1, exhibiting its anti-hepatocellular carcinoma effects through the inhibition of their interaction.


Assuntos
Carcinoma Hepatocelular , Daphne , Diterpenos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Daphne/química , Diterpenos/farmacologia , Diterpenos/química , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia
6.
J Agric Food Chem ; 72(7): 3436-3444, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320759

RESUMO

The increasing resistance displayed by plant phytopathogenic bacteria to conventional pesticides has heightened the urgency for the exploration of novel antibacterial agents possessing distinct modes of action (MOAs). In this study, a series of novel phenylalanine derivatives with the unique structure of acylhydrazone dithioether have been designed and synthesized. Bioassay results demonstrated that most target compounds exhibited excellent in vitro antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv citri (Xac). Among them, the EC50 values of L3, L4, L6, L21, and L22 against Xoo were 7.4, 9.3, 6.7, 8.9, and 5.1 µg/mL, respectively, superior to that of bismerthiazol (BT) and thiodiazole copper (TC) (41.5 and >100 µg/mL); the EC50 values of L3, L4, L5, L6, L7, L8, L20, L21, and L22 against Xac were 5.6, 2.5, 6.2, 4.1, 4.2, 6.4, 6.3, 3.6, and 5.2 µg/mL, respectively, superior to that of BT and TC (43.3 and >100 µg/mL). An unmodified drug affinity responsive target stability (DARTS) technology was used to investigate the antibacterial MOAs of active compound L22, and the 50S ribosomal protein L2 (RL2) as an unprecedented target protein in Xoo cells was first discovered. The target protein RL2 was then expressed and purified. Furthermore, the in vitro interactions by microscale thermophoresis (Kd = 0.050 µM) and fluorescence titration (Ka = 1.4 × 105 M-1) experiments also demonstrated a strong binding force between compound L22 and RL2. Overall, these results not only facilitate the development of novel antibacterial agents but also establish a reliable method for exploring the targets of bactericides.


Assuntos
Oryza , Xanthomonas , Fenilalanina/farmacologia , Testes de Sensibilidade Microbiana , Oxidiazóis/farmacologia , Antibacterianos/química , Oryza/microbiologia , Doenças das Plantas
7.
Future Med Chem ; 16(5): 439-451, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318668

RESUMO

Aim: Thiophene-based heterocycles were synthesized and evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus, Escherichia coli, Clostridium difficile and Candida albicans strains. Methods: Antimicrobial activity was determined using the broth microdilution method. Results: Spiro-indoline-oxadiazole 17 displayed the highest activity against C. difficile while having no effects against other bacterial strains. Compounds 8 and 16 displayed strong effects against TolC, an outer membrane protein, mutant E. coli. The results of computational chemical study and outcomes of experiments were in good agreement. A molecular docking study was conducted using a molecular operating environment to simulate the binding energies of the potent compounds with D-alanine ligase protein. Conclusion: This study suggests that spiro-indoline-oxadiazole 17 could be a good anticlostridial agent.


A series of thiophene-based heterocycles was synthesized and evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus, Escherichia coli, Clostridium difficile and Candida albicans strains. Notablly, a spiro­indoline­oxadiazole derivative displayed the highest activity against C. difficile with minimum inhibitory concentration values of 2 to 4 µg/ml. Interestingly, this compound exhibited no effects against other tested bacterial strains. For C. difficile, drugs that can inhibit it without affecting other Gram-positive or Gram-negative bacteria (not affecting the normal microbiota) are needed. This compound could be a good anticlostridial agent.


Assuntos
Clostridioides difficile , Hidrazinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Escherichia coli , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Tiofenos/farmacologia , Oxidiazóis/farmacologia
8.
ACS Chem Neurosci ; 15(4): 827-843, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335726

RESUMO

Several lines of evidence have indicated that nicotinic acetylcholine receptors (nAChR) that contain α9 subunits, probably in combination with α10 subunits, may be valuable targets for the management of pain associated with inflammatory diseases through a cholinergic anti-inflammatory system (CAS), which has also been associated with α7 nAChR. Both α7- and α9-containing neuronal nAChR can be pharmacologically distinguished from the high-affinity nicotinic receptors of the brain by their sensitivity to α-bungarotoxin, but in other ways, they have quite distinct pharmacological profiles. The early association of α7 with CAS led to the development of numerous new ligands, variously characterized as α7 agonists, partial agonists, or silent agonists that desensitized α7 receptors without activation. Subsequent reinvestigation of one such family of α7 ligands based on an N,N-diethyl-N'-phenylpiperazine scaffold led to the identification of potent agonists and antagonists for α9. In this paper, we characterize the α9/α10 activity of a series of compounds based on a 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole (QMO) scaffold and identify two new potent ligands of α9, QMO-28, an agonist, and QMO-17, an antagonist. We separated the stereoisomers of these compounds to identify the most potent agonist and discovered that only the 3R isomer of QMO-17 was an α9 antagonist, permitting an in silico model of α9 antagonism to be developed. The α9 activity of these compounds was confirmed to be potentially useful for CAS management of inflammatory pain in cell-based assays of cytokine release.


Assuntos
Receptores Nicotínicos , Humanos , Oxidiazóis/farmacologia , Receptor Nicotínico de Acetilcolina alfa7 , Ligantes , Dor
9.
Cell Chem Biol ; 31(4): 699-711.e6, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38181799

RESUMO

Drug-resistant Mycobacterium tuberculosis (Mtb) remains a major public health concern requiring complementary approaches to standard anti-tuberculous regimens. Anti-virulence molecules or compounds that enhance the activity of antimicrobial prodrugs are promising alternatives to conventional antibiotics. Exploiting host cell-based drug discovery, we identified an oxadiazole compound (S3) that blocks the ESX-1 secretion system, a major virulence factor of Mtb. S3-treated mycobacteria showed impaired intracellular growth and a reduced ability to lyse macrophages. RNA sequencing experiments of drug-exposed bacteria revealed strong upregulation of a distinct set of genes including ethA, encoding a monooxygenase activating the anti-tuberculous prodrug ethionamide. Accordingly, we found a strong ethionamide boosting effect in S3-treated Mtb. Extensive structure-activity relationship experiments revealed that anti-virulence and ethionamide-boosting activity can be uncoupled by chemical modification of the primary hit molecule. To conclude, this series of dual-active oxadiazole compounds targets Mtb via two distinct mechanisms of action.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Humanos , Etionamida/farmacologia , Oxidiazóis/farmacologia , Proteínas de Bactérias/genética
10.
Recent Pat Anticancer Drug Discov ; 19(3): 257-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37497702

RESUMO

Among the deadliest diseases, cancer is characterized by tumors or an increased number of a specific type of cell because of uncontrolled divisions during mitosis. Researchers in the current era concentrated on the development of highly selective anticancer medications due to the substantial toxicities of conventional cytotoxic drugs. Several marketed drug molecules have provided resistance against cancer through interaction with certain targets/growth factors/enzymes, such as Telomerase, Histone Deacetylase (HDAC), Methionine Aminopeptidase (MetAP II), Thymidylate Synthase (TS), Glycogen Synthase Kinase-3 (GSK), Epidermal Growth Factor (EGF), Vascular Endothelial Growth Factor (VEGF), Focal Adhesion Kinase (FAK), STAT3, Thymidine phosphorylase, and Alkaline phosphatase. The molecular structure of these drug molecules contains various heterocyclic moieties that act as pharmacophores. Recently, 1,3,4- oxadiazole (five-membered heterocyclic moiety) and its derivatives attracted researchers as these have been reported with a wide range of pharmacological activities, including anti-cancer. 1,3,4- oxadiazoles have exhibited anti-cancer potential via acting on any of the above targets. The presented study highlights the synthesis of anti-cancer 1,3,4-oxadiazoles, their mechanism of interactions with targets, along with structure-activity relationship concerning anti-cancer potential.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico
11.
Arch Pharm (Weinheim) ; 357(1): e2300328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840397

RESUMO

Oxadiazoles and thiadiazoles are malleable heterocycles that have recently generated major interest in the field of medicinal chemistry. Compounds based on these moieties have versatile biological applications such as anticonvulsant, anticancer, antidiabetic, and antioxidant agents. Due to the versatile nature and stability of the oxadiazole and thiadiazole nucleus, medicinal chemists have changed the structural elements of the ring in numerous ways. These compounds have shown significant anticonvulsant effects, demonstrating their potential in the management of epileptic disorders. In this review, we have covered numerous biological pathways and in silico targeted proteins of oxadiazole and thiadiazole derivatives for treating various biological disorders. The data compiled in this article will be helpful for researchers, research scientists, and research chemists who work in the field of drug discovery and drug development.


Assuntos
Oxidiazóis , Tiadiazóis , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Descoberta de Drogas , Tiadiazóis/química
12.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070878

RESUMO

Staphylococcus aureus is one of the main etiological agents causing foodborne diseases, and the development of new antibacterial agents is urgent. This study evaluated the antibacterial activity and the possible mechanism of action of the 1,3,4-oxadiazole LMM6 against S. aureus. The minimum inhibitory concentration (MIC) of LMM6 ranged from 1.95 to 7.81 µg ml-1. The time-kill assay showed that 48-h treatment at 1× to 8× MIC reduced S. aureus by 4 log colony forming unit (CFU), indicating a bacteriostatic effect. Regarding the possible mechanism of action of LMM6, there was accumulation of reactive oxygen species (ROS) and an increase in the absorption of crystal violet (∼50%) by the cells treated with LMM6 at 1× and 2× MIC for 6-12 h. In addition, there was increased propidium iodide uptake (∼84%) after exposure to LMM6 for 12 h at 2× MIC. After 48 h of treatment, 100% of bacteria had been injured. Scanning electron microscopy observations demonstrated that LMM6-treated cells were smaller compared with the untreated group. LMM6 exhibited bacteriostatic activity and its mechanism of action involves increase of intracellular ROS and disturbance of the cell membrane, which can be considered a key target for controlling the growth of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Oxidiazóis/farmacologia , Testes de Sensibilidade Microbiana
13.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157261

RESUMO

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Assuntos
Mycobacterium tuberculosis , Animais , Oxidiazóis/farmacologia , Oxidiazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Nitrorredutases , Mamíferos
14.
J Agric Food Chem ; 72(1): 128-139, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154095

RESUMO

To discover new nematicides, a series of novel amide derivatives containing 1,2,4-oxadiazole were designed and synthesized. Several compounds showed excellent nematicidal activity. The LC50 values of compounds A7, A18, and A20-A22 against pine wood nematode (Bursaphelenchus xylophilus), rice stem nematode (Aphelenchoides besseyi), and sweet potato stem nematode (Ditylenchus destructor) were 1.39-3.09 mg/L, which were significantly better than the control nematicide tioxazafen (106, 49.0, and 75.0 mg/L, respectively). Compound A7 had an outstanding inhibitory effect on nematode feeding, reproductive ability, and egg hatching. Compound A7 effectively promoted the oxidative stress of nematodes and caused intestinal damage to nematodes. Compound A7 significantly inhibited the activity of succinate dehydrogenase (SDH) in nematodes, leading to blockage of electron transfer in the respiratory chain and thereby hindering the synthesis of adenosine triphosphate (ATP), which consequently affects the entire oxidative phosphorylation process to finally cause nematode death. Therefore, compound A7 can be used as a potential SDH inhibitor in nematicide applications.


Assuntos
Nematoides , Tylenchida , Animais , Oxidiazóis/farmacologia , Antinematódeos/farmacologia , Reprodução
15.
Future Med Chem ; 15(24): 2239-2255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014535

RESUMO

Background: Paracoccidioidomycosis (PCM) is a systemic infection caused by Paracoccidioides spp. (Pb). PCM can be associated or clinically confused with tuberculosis (TB), another pulmonary infection, caused by Mycobacterium tuberculosis (Mtb). Futhermore, the long treatment time of TB and PCM and the cases of TB drug resistance impose difficulties for the cure of these diseases. Results: New 1,3,4-oxadiazoles containing the 4-methoxynaphthalene ring were synthesized and their antimicrobial activity was evaluated against Pb and Mtb. The derivative 6n (with 2-hydroxy-5-nitrophenyl subunit) is the most promising of the series. Conclusion: The 1,3,4-oxadiazole 6n can be used as a prototype drug candidate, with anti-Pb and anti-MTb activities, showing a broad-spectrum profile for the treatment of both pulmonary infections.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Paracoccidioidomicose , Tuberculose , Humanos , Oxidiazóis/farmacologia , Chumbo/uso terapêutico , Tuberculose/tratamento farmacológico , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/microbiologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico
16.
J Med Chem ; 66(20): 14188-14207, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37797307

RESUMO

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.


Assuntos
Neoplasias , Oxidiazóis , Ratos , Camundongos , Animais , Desacetilase 6 de Histona , Oxidiazóis/farmacologia , Tubulina (Proteína)/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
17.
J Med Chem ; 66(19): 13821-13837, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782298

RESUMO

Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.


Assuntos
Inibidores de Histona Desacetilases , Oxidiazóis , Desacetilase 6 de Histona/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Zinco/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
18.
Arch Pharm (Weinheim) ; 356(12): e2300384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806747

RESUMO

A library of 22 derivatives of 1,3,4-oxadiazole-2-thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α-glucosidase and α-amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive-type inhibition for α-amylase, noncompetitive-type inhibition for α-glucosidase and AChE, and mixed-type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , alfa-Glucosidases/metabolismo , Acarbose , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , alfa-Amilases
19.
ACS Infect Dis ; 9(11): 2141-2159, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37828912

RESUMO

The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Mamíferos , Oxidiazóis/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
20.
Arch Pharm (Weinheim) ; 356(11): e2300345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37661355

RESUMO

Disubstituted five-membered heterocycles (1,2,4-triazole and 1,3,4 oxadiazole) were synthesized and investigated as inhibitors for signal transducer and activator of transcription 3 (STAT3) enzyme of breast cancer. 3-(Benzylthio)-5-(4-chlorobenzyl)-4H-1,2,4-triazol-4-amine (12d) was found to be the most active among the synthesized compounds with a half-maximal inhibitory concentration (IC50 ) value of 1.5 µM on MCF7 cells and was found to show a great inhibitory effect on the STAT3 enzyme. Compounds 9a,b,d,e,f, 11, and 12a,b,f,e show IC50 values in the range of 3-12 µM for the MCF7 cell line. Molecular modeling was used to investigate the biological results of the synthesized compounds.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Fator de Transcrição STAT3 , Oxidiazóis/farmacologia , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...